题目内容
【题目】如图,点A是反比例函数y=(m<0)位于第二象限的图像上的一个动点,过点A作AC⊥x
轴于点C;M为是线段AC的中点,过点M作AC的垂线,与反比例函数的图像及y轴分别交于B、
D两点.顺次连接A、B、C、D.设点A的横坐标为n.
(1)求点B的坐标(用含有m、n的代数式表示);
(2)求证:四边形ABCD是菱形;
(3)若△ABM的面积为2,当四边形ABCD是正方形时,求直线AB的函数表达式.
【答案】(1) B(2n,);(2)证明见解析;(3)y=x+6.
【解析】
试题(1)由题意可表示出点A的坐标,根据BD是AC的中垂线可得点B的纵坐标,代入反比例函数解析式即可求得横坐标;
(2)先根据AM=CM、BM=MD证明四边形ABCD是平行四边形,再根据BD⊥AC即可证明四边形ABCD是菱形;
(3)根据题意求得点A、B的坐标即可得.
试题解析:(1)当x=n时,y=,∴A(n,),
由题意知BD是AC的中垂线,∴点B的纵坐标为,
∴把y=代入y=得x=2n,∴B(2n,);
(2)由(1)可知AM=CM,BM=MD= ,
∴四边形ABCD是平行四边形,
又∵BD⊥AC,∴平行四边形ABCD是菱形;
(3)当四边形ABCD是正方形时,△ABM为等腰直角三角形,
∵△ABM的面积为2,∴AM=BM=2,∴A(-2,4),B(-4,2),
由此可得直线AB所对应的函数表达式为y=x+6.
练习册系列答案
相关题目