题目内容
【题目】如图,AB为⊙O的直径,D是弧BC的中点,DE⊥AC交AC的延长线于E,⊙O的切线BF交AD的延长线于F.
(1)求证:DE是⊙O的切线;
(2)若DE=3,⊙O的半径为5.求BF的长.
【答案】(1)证明见解析;(2).
【解析】试题分析:(1)连接BC、OD,由D是弧BC的中点,可知:OD⊥BC;由OB为⊙O的直径,可得:BC⊥AC,根据DE⊥AC,可证OD⊥DE,从而可证DE是⊙O的切线;
(2)在Rt△ABC中,运用勾股定理可求得AC的长度,运用切割线定理可将AE的长求出,根据△AED∽△ABF,可将BF的长求出.
试题解析:(1)证明:连接OD,BC,OD与BC相交于点G,
∵D是弧BC的中点,
∴OD垂直平分BC,
∵AB为⊙O的直径,
∴AC⊥BC,
∴OD∥AE.
∵DE⊥AC,
∴OD⊥DE,
∵OD为⊙O的半径,
∴DE是⊙O的切线.
(2)解:由(1)知:OD⊥BC,AC⊥BC,DE⊥AC,
∴四边形DECG为矩形,
∴CG=DE=3,
∴BC=6.
∵⊙O的半径为5,
∴AB=10,
∴AC==8,
由(1)知:DE为⊙O的切线,
∴DE2=ECEA,即32=(EA﹣8)EA,
解得:AE=9.
∵D为弧BC的中点,
∴∠EAD=∠FAB,
∵BF切⊙O于B,
∴∠FBA=90°.
又∵DE⊥AC于E,
∴∠E=90°,
∴∠FBA=∠E,
∴△AED∽△ABF,
∴,
∴,
∴BF=.
【题目】某工厂一周计划每日生产某产品100吨,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(以计划量为标准,增加的吨数记为正数,减少的吨数记为负数)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减/吨 | ﹣1 | +3 | ﹣2 | +4 | +7 | ﹣5 | ﹣10 |
(1)生产量最多的一天比生产量最少的一天多生产多少吨?
(2)本周总生产量是多少吨?比原计划增加了还是减少了?增减数为多少吨?
(3)若本周总生产的产品全部由35辆货车一次性装载运输离开工厂,则平均每辆货车大约需装载多少吨?(结果精确到0.01吨)