题目内容
【题目】已知:如图,AB平分∠CBD,∠DBC=60°,∠C=∠D.
(1)若AC⊥BC,求∠BAE的度数;
(2)请探究∠DAE与∠C的数量关系,写出你的探究结论,并加以证明;
(3)如图,过点D作DG∥BC交CE于点F,当∠EFG=2∠DAE时,求∠BAD的度数.
【答案】(1)∠BAE==120°;(2)结论:∠DAE=2∠C—120°.证明见解析;(3)∠BAD=66°.
【解析】
(1)根据角平分线的性质得到∠CBD=60°,由于∠BAE是△ABC的外角,则可以得到答案.
(2)根据三角形内角和性质和四边形内角和,进行计算即可得到答案.
(3)根据对顶角的性质可得∠EFG=∠DFA,根据平行线的性质得2∠DAE +∠C=180°,
再根据角平分线的性质即可得到答案.
解:∵AC⊥BC
∴∠BCA=90°,
∵AB平分∠CBD,
∴∠ABC=∠CBD, ∠CBD=60°,
∴∠ABC=30°,
∵∠BAE是△ABC的外角,
∴∠BAE=∠BCA+∠ABC=120°.
结论:∠DAE=2∠C—120°.
证明:∵∠DAE+∠DAC=180°,
∴∠DAC =180°—∠DAE,
∵∠DAC+∠DBC+∠C +∠D =360°,
∴180—∠DAE+∠DBC+∠C +∠D =360°,
∵∠DBC=60°,∠C=∠D,
∴2∠C—∠DAE=120°,
∴∠DAE=2∠C—120°.
解:∵∠EFG和∠DFA是对顶角,
∴∠EFG=∠DFA,
∵∠EFG=2∠DAE,
∴∠DFA=2∠DAE,
∵DG∥BC,
∴∠DFA+∠C=180°,
∴2∠DAE +∠C=180°,
∵∠DAE=2∠C—120°,
∴∠DAE=48°,
∴∠DAC =132°,
∵AB平分∠CBD,
∴∠DBA=∠CBA,
∵∠C=∠D,
∴∠BAD=∠BAC,
∴∠BAD=∠DAC=66°