题目内容
【题目】已知,,分别在直线上,是平面内一点,和的平分线所在直线相交于点.
(1)如图1,当都在直线之间,且时,的度数为_________;
(2)如图2,当都在直线上方时,探究和之间的数量关系,并证明你的结论;
(3)如图3,当在直线两侧时,直接写出和之间的数量关系是_____.
【答案】(1)45°;(2)证明见解析;(3).
【解析】
(1)过E作EH∥AB,FG∥AB,根据平行线的性质得到∠BME=∠MEH,∠DNE=∠NEH,根据角平分线的定义得到∠BMF+∠DNF=(∠BME+∠DNE)=45°,于是得到结论;(2)根据三角形的外角的性质得到∠E=∠EGB-∠EMB,根据平行线的性质得到∠EGB=∠END,∠FHB=∠FND,根据角平分线的定义得到∠EMB=2∠FMB,∠END=2∠FND,于是得到结论;(3)根据平行线的性质得到∠5=∠END,根据角平分线的定义得到∠5=∠END=2∠4,∠BME=2∠1=∠E+∠5=∠E+2∠4,根据三角形的外角的性质和四边形的内角和即可得到结论.
解:(1)过E作EH∥AB,过点F作FG∥AB,
∵AB∥CD,
∴EH∥CD,FG∥CD,
∴∠BME=∠MEH,∠DNE=∠NEH,
∴∠BME+∠DNE=∠MEH+∠NEH=∠MEN=90°,
同理∠MFN=∠BMF+∠DNF,
∵MF平分∠BME,FN平分∠DNE,
∴∠BMF+∠DNF=(∠BME+∠DNE)=45°,
∴∠MFN的度数为45°;
故答案为:45°;
(2)∵∠EGB=∠EMB+∠E,
∴∠E=∠EGB-∠EMB,
∵AB∥CD,
∴∠EGB=∠END,∠FHB=∠FND,
∴∠E=∠END-∠EMB,
∵MF、NF分别平分∠BME和∠DNE,
∴∠EMB=2∠FMB,∠END=2∠FND,
∴∠E=2∠FND-2∠FMB=2(∠FND-∠FMB),
∵∠FHB=∠FMB+∠F,
∴∠F=∠FHB-∠FMB,
=∠FND-∠FMB,
∴∠E=2∠F;
(3)∠E+∠MFN=180°,
证明:∵AB∥CD,
∴∠5=∠END,
∵NF平分∠END,
∴∠5=∠END=2∠4,
∵MF平分∠BME,
∴∠BME=2∠1=∠E+∠5=∠E+2∠4,
∴∠3=∠1=∠E+∠4,
∵∠E+∠MFN=360°-∠4-∠2-∠3=360°-∠4-(180°-∠E-2∠4)-(∠E+∠4)=180°+∠
∴∠MFN+∠E=180°.
故答案为:∠E+∠MFN=180°.