题目内容
【题目】已知:如图,在四边形ABCD中,AB⊥BC于B点,若AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.
【答案】36
【解析】分析:连接AC,在直角三角形ABC中,由AB及BC的长,利用勾股定理求出AC的长,再由AD及CD的长,利用勾股定理的逆定理得到三角形ACD为直角三角形,根据四边形ABCD的面积=直角三角形ABC的面积+直角三角形ACD的面积,即可求出四边形的面积.
本题解析: 连接AC,如图所示:
∵∠B=90°,
∴△ABC为直角三角形,
又∵AB=3,BC=4,
∴根据勾股定理得:AC=,
又∵CD=12,AD=13,
∴,
∴ ,
∴△ACD为直角三角形,∠ACD=90°,
则,
故四边形ABCD的面积是36.
练习册系列答案
相关题目