题目内容
【题目】已知,如图(1),PAB为⊙O的割线,直线PC与⊙O有公共点C,且PC2=PA×PB,
(1)求证:∠PCA=∠PBC;直线PC是⊙O的切线;
(2)如图(2),作弦CD,使CD⊥AB,连接AD、BC,若AD=2,BC=6,求⊙O的半径;
(3)如图(3),若⊙O的半径为 ,PO= ,MO=2,∠POM=90°,⊙O上是否存在一点Q,使得PQ+ QM有最小值?若存在,请求出这个最小值;若不存在,说明理由.
【答案】
(1)
证明:∵PC2=PA×PB,
∴ ,
∵∠CPA=∠BPC,
∴△PCA∽△PBC,
∴∠PCA=∠PBC,
作直径CF,连接AF,则∠CAF=90°,
∴∠F+∠FCA=90°,
∵∠F=∠B,∠PCA=∠PBC,
∴∠PCA+∠FCA=90°,
∵PC经过直径的一端点C,
∴直线PC是⊙O的切线
(2)
解:作直径BE,连接CE、AE.则∠BCE=∠BAE=90°,
∵CD⊥AB,
∴AE∥CD,
∴ = ,
∴AD=CE=2,
∵BC=6,
∴在Rt△BCE中,由勾股定理得:
BE2=CE2+BC2=22+62=40,
∴BE=2 ,
∴R=
(3)
解:取OM中点G,连接PG与⊙O的交点就是符合条件的点Q,
连接QO、QM,
∵MO=2,
∴OG= OM=1,
∵⊙O的半径r=OQ= ,
∴OQ2=OGOM,
∵∠MOQ=∠QOG,
∴△MOQ∽△QOG,
∴ = ,
∴QG= QM,
∴PQ+ QM=PQ+QG=PG,
根据两点之间线段最短,
此时PQ+ QM=PQ+QG=PG最小,
∴PQ+ QM最小值为PG= = = .
【解析】(1)根据已知条件得到 ,推出△PCA∽△PBC,根据相似三角形的性质得到∠PCA=∠PBC,作直径CF,连接AF,则∠CAF=90°,得到∠PCA+∠FCA=90°,P过直径的一端点C,于是得到结论;(2)作直径BE,连接CE、AE.则∠BCE=∠BAE=90°,推出AE∥CD,得到 = ,根据勾股定理得到BE=2 ,于是得到结论;(3)取OM中点G,连接PG与⊙O的交点就是符合条件的点Q,连接QO、QM,得到OG= OM=1,根据相似三角形的性质得到 = ,求得QG= QM,根据两点之间线段最短,即可得到结论.