题目内容
【题目】如图,抛物线y= x2+bx+c与y轴交于点C(0,﹣4),与x轴交于点A,B,且B点的坐标为(2,0).
(1)求该抛物线的解析式.
(2)若点P是AB上的一动点,过点P作PE∥AC,交BC于E,连接CP,求△PCE面积的最大值.
(3)若点D为OA的中点,点M是线段AC上一点,且△OMD为等腰三角形,求M点的坐标.
【答案】
(1)
解:把点C(0,﹣4),B(2,0)分别代入y= x2+bx+c中,
得 ,
解得
∴该抛物线的解析式为y= x2+x﹣4
(2)
解:令y=0,即 x2+x﹣4=0,解得x1=﹣4,x2=2,
∴A(﹣4,0),S△ABC= ABOC=12.
设P点坐标为(x,0),则PB=2﹣x.
∵PE∥AC,
∴∠BPE=∠BAC,∠BEP=∠BCA,
∴△PBE∽△BAC,
∴ ,即 ,
化简得:S△PBE= (2﹣x)2.
S△PCE=S△PCB﹣S△PBE= PBOC﹣S△PBE= ×(2﹣x)×4﹣ (2﹣x)2
= x2﹣ x+
=﹣ (x+1)2+3
∴当x=﹣1时,S△PCE的最大值为3
(3)
解:△OMD为等腰三角形,可能有三种情形:
(I)当DM=DO时,如答图①所示.
DO=DM=DA=2,
∴∠OAC=∠AMD=45°,
∴∠ADM=90°,
∴M点的坐标为(﹣2,﹣2);
(II)当MD=MO时,如答图②所示.
过点M作MN⊥OD于点N,则点N为OD的中点,
∴DN=ON=1,AN=AD+DN=3,
又△AMN为等腰直角三角形,∴MN=AN=3,
∴M点的坐标为(﹣1,﹣3);
(III)当OD=OM时,
∵△OAC为等腰直角三角形,
∴点O到AC的距离为 ×4= ,即AC上的点与点O之间的最小距离为 .
∵ >2,∴OD=OM的情况不存在.
综上所述,点M的坐标为(﹣2,﹣2)或(﹣1,﹣3)
【解析】(1)利用待定系数法求出抛物线的解析式;(2)首先求出△PCE面积的表达式,然后利用二次函数的性质求出其最大值;(3)△OMD为等腰三角形,可能有三种情形,需要分类讨论.
【考点精析】通过灵活运用二次函数的性质,掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小即可以解答此题.