题目内容

【题目】如图,在ABCD中,AB为⊙O的直径,⊙O与DC相切于点E,与AD相交于点F,已知AB=12,∠C=60°,则 的长为(
A.
B.
C.π
D.2π

【答案】C
【解析】解:如图连接OE、OF,
∵CD是⊙O的切线,
∴OE⊥CD,
∴∠OED=90°,
∵四边形ABCD是平行四边形,∠C=60°,
∴∠A=∠C=60°,∠D=120°,
∵OA=OF,
∴∠A=∠OFA=60°,
∴∠DFO=120°,
∴∠EOF=360°﹣∠D﹣∠DFO﹣∠DEO=30°,
的长= =π.
故选C.
【考点精析】解答此题的关键在于理解平行四边形的性质的相关知识,掌握平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分,以及对切线的性质定理的理解,了解切线的性质:1、经过切点垂直于这条半径的直线是圆的切线2、经过切点垂直于切线的直线必经过圆心3、圆的切线垂直于经过切点的半径.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网