题目内容
【题目】已知:在⊙O中,弦AC⊥弦BD,垂足为H,连接BC,过点D作DE⊥BC于点E,DE交AC于点F.
(1)如图1,求证:BD平分∠ADF;
(2)如图2,连接OC,若AC=BC,求证:OC平分∠ACB;
(3)如图3,在(2)的条件下,连接AB,过点D作DN∥AC交⊙O于点N,若AB=3,DN=9.求sin∠ADB的值.
【答案】(1)证明见解析;(2)证明见解析;(3)sin∠ADB的值为.
【解析】
(1)根据等角的余角相等即可证明;
(2)连接OA、OB.只要证明△OCB≌△OCA即可解决问题;
(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q,则四边形OPHQ是矩形,可知BN是直径,则HQ=OP=DN=,设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=2x+9,CH=AC﹣AH=2x+9﹣x=x+9,在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.在Rt△BCH中,BC2=BH2+CH2即(2x+9)2=()2﹣x2+(x+9)2,解得 x=3,BC=2x+9=15,CH=x+9=12求出sinBCH,即为sin∠ADB的值.
(1)证明:如图1,
∵AC⊥BD,DE⊥BC,
∴∠AHD=∠BED=90°,
∴∠DAH+∠ADH=90°,∠DBE+∠BDE=90°,
∵∠DAC=∠DBC,
∴∠ADH=∠BDE,
∴BD平分∠ADF;
(2)证明:连接OA、OB.
∵OB=OC=OA,AC=BC,
∴△OCB≌△OCA(SSS),
∴∠OCB=∠OCA,
∴OC平分∠ACB;
(3)如图3中,连接BN,过点O作OP⊥BD于点P,过点O作OQ⊥AC于点Q.
则四边形OPHQ是矩形,
∵DN∥AC,
∴∠BDN=∠BHC=90°,
∴BN是直径,
则OP=DN=,
∴HQ=OP=,
设AH=x,则AQ=x+,AC=2AQ=2x+9,BC=AC=2x+9,
∴CH=AC﹣AH=2x+9﹣x=x+9
在Rt△AHB中,BH2=AB2﹣AH2=()2﹣x2.
在Rt△BCH中,BC2=BH2+CH2,
即(2x+9)2=()2﹣x2+(x+9)2,
整理得2x2+9x﹣45=0,
(x﹣3)(2x+15)=0,
解得: x=3(负值舍去),
BC=2x+9=15,CH=x+9=12
∵∠ADB=∠BCH,
∴sin∠ADB=sin∠BCH===.
即sin∠ADB的值为.