题目内容
【题目】如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是( )
A.∠B=∠DB.∠C=∠EC.D.
【答案】D
【解析】
先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.
∵∠1=∠2,
∴∠1+∠BAE=∠2+∠BAE,
∴∠DAE=∠BAC,
A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;
B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;
C、添加可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;
D、添加不能证明△ABC∽△ADE,故此选项符合题意;
故选:D.
练习册系列答案
相关题目
【题目】为了提高学生书写汉字的能力,增强保护汉字的意识,某校举办了首届“汉字听写大赛”,学生经选拔后进入决赛,测试同时听写100个汉字,每正确听写出一个汉字得1分,本次决赛,学生成绩为(分),且,将其按分数段分为五组,绘制出以下不完整表格:
组别 | 成绩(分) | 频数(人数) | 频率 |
一 | 2 | 0.04 | |
二 | 10 | 0.2 | |
三 | 14 | b | |
四 | a | 0.32 | |
五 | 8 | 0.16 |
请根据表格提供的信息,解答以下问题:
(1)本次决赛共有________名学生参加;
(2)直接写出表中_________,_________;
(3)请补全下面相应的频数分布直方图;
(4)若决赛成绩不低于80分为优秀,则本次大赛的优秀率为_________.