题目内容
【题目】如图(1),AB=7cm,AC⊥AB,BD⊥AB 垂足分别为 A、B,AC=5cm.点P 在线段 AB 上以 2cm/s 的速度由点 A 向点B 运动,同时,点 Q 在射线 BD 上运动.它们运 动的时间为 t(s)(当点 P 运动结束时,点 Q 运动随之结束).
(1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,△ACP 与△BPQ 是否全等, 并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;
(2)如图(2),若“AC⊥AB,BD⊥AB” 改为 “∠CAB=∠DBA=60°”,点 Q 的运动速 度为 x cm/s,其他条件不变,当点 P、Q 运动到某处时,有△ACP 与△BPQ 全等,求出相应的 x、t 的值.
【答案】(1)△ACP≌△BPQ,PC⊥PQ,理由见解析;(2)t=1s,x=2cm/s或t=s,x=cm/s.
【解析】
(1)利用SAS证得△ACP≌△BPQ,得出∠ACP=∠BPQ,即可得出∠APC+∠BPQ=∠APC+∠ACP=90°,即可得出结论;
(2)由△ACP≌△BPQ,分两种情况:①AC=BP,AP=BQ,②AC=BQ,AP=BP,建立方程组求得答案即可.
解:(1)△ACP≌△BPQ,PC⊥PQ,
理由如下:当t=1时,AP=BQ=2,
则BP=7-2=5,
∴BP=AC,
∵AC⊥AB,BD⊥AB
∴∠A=∠B=90°
在△ACP和△BPQ中,
,
∴△ACP≌△BPQ;
∴∠ACP=∠BPQ,
∴∠APC+∠BPQ=∠APC+∠ACP=90°.
∴∠CPQ=90°,
即PC⊥PQ;
(2)①若△ACP≌△BPQ,
则AC=BP,AP=BQ,可得:5=7-2t,2t=xt
解得:x=2,t=1;
②若△ACP≌△BQP,
则AC=BQ,AP=BP,可得:5=xt,2t=7-2t
解得:t=, x=5÷=,
故当t=1s,x=2cm/s或t=s,x=cm/s时,△ACP与△BPQ全等.