题目内容

【题目】(1)如图(1),在△ABC中,AD、AE分别是△ABC的高和角平分线,已知:∠B=30°,∠C=50°.求∠DAE的度数;

2)如图(2),BAC的角平分线AFBC于点E,过点FFDBC于点D,若∠B = x°C =x+30° .

①∠CAE =   (含x的代数式表示)②求∠F的度数.

【答案】1DAE = 10° ;(2①∠CAE = (75x) ° F =15°

【解析】试题分析:(1)先根据三角形内角和得到∠CAB=180°-∠B-∠C=100°,再根据角平分线与高线的定义得到∠CAE=CAB=50°,∠ADC=90°,则∠CAD=90°-∠C=40°,然后利用∠DAE=∠CAE-∠CAD计算即可;

(2)根据题意可知∠B=x°,∠C=(x+30)°,根据三角形的内角和定理可知∠ADC+∠DAC+∠C=180°,∠ADC=∠B+∠BAF,根据角平分线的性质,可知∠EAC=∠BAF,可得出∠ADC的度数,再根据FDBC,可得出∠F的度数.

试题解析:(1)∵∠B=30°,∠C=50°,

∴∠CAB=180°-∠B-∠C=100°,

AD是△ABC角平分线,

∴∠CAE=CAB=50°,

AE是△ABC的高,

∴∠ADC=90°,

∴∠CAD=90°-∠C=40°,

∴∠DAE=∠CAE-∠CAD=50°-40°=10°;

(2)①∵∠B=x°,∠C=(x+30)°,AF平分∠BAC

∴∠EAC=∠BAF

∴∠CAE=×[180°-x°-(x+30)°]=75°-x°,

②∠AEC=∠BAE+∠B=75°,

FDBC

∴∠F=15°.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网