题目内容
【题目】如图,在等边△ABC中,BC=8cm,射线AG∥BC,点E从点A出发沿射线AG以1cm/s的速度运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;
(2)①当t为 时,以A、F、C、E为顶点的四边形是平行四边形(直接写出结果);
②当t为 时,四边形ACFE是菱形.
【答案】(1)见解析 (2)①或8; ②8.
【解析】
(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;
(2)①分别从当点F在C的左侧时与当点F在C的右侧时去分析,由当AE=CF时,以A、C、E、F为顶点四边形是平行四边形,可得方程,解方程即可求得答案;
②若四边形ACFE是菱形,则有CF=AC=AE=8,由E的速度求出E运动的时间即可.
(1)证明:∵AG∥BC,
∴∠EAD=∠DCF,∠AED=∠DFC,
∵D为AC的中点,
∴AD=CD,
∵在△ADE和△CDF中,
,
∴△ADE≌△CDF(AAS);
(2)解:①当点F在C的左侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BC-BF=6-2t(cm),
∵AG∥BC,
∴当AE=CF时,四边形AECF是平行四边形,
即t=8-2t,
解得:t=;
当点F在C的右侧时,根据题意得:AE=tcm,BF=2tcm,
则CF=BF-BC=2t-8(cm),
∵AG∥BC,
∴当AE=CF时,四边形AEFC是平行四边形,
即t=2t-8,
解得:t=8;
综上可得:当t=或8s时,以A、C、E、F为顶点四边形是平行四边形.
②若四边形ACFE是菱形,则有CF=AC=AE=8,
则此时的时间t=8÷1=8(s).