题目内容
【题目】春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并确定最大利润.
【答案】(1) 甲商品每件进价为30元,乙商品每件进价为70元;(2) 最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.
【解析】
(1)设甲商品每件进价为x元,乙商品每件进价为y元,根据甲商品2件和乙商品3件共需270元,甲商品3件和乙商品2件共需230元,列出方程求解即可;
(2)根据题意可以得到利润与甲种商品的关系,由甲种商品的数量不少于乙种商品数量的4倍,可以得到甲种商品的取值范围,从而可以求得获利最大的进货方案,以及最大利润.
解:(1)设甲商品每件进价为x元,乙商品每件进价为y元,
解得:
∴甲商品每件进价为30元,乙商品每件进价为70元.
(2)设购买甲种商品a件,获利为w元,
∵,
解得:,
当a=80时,w取得最大值,所以w=1200,
∴最大的进货方程是购买甲种商品80件,乙种商品20件,最大利润为1200元.
练习册系列答案
相关题目