题目内容
【题目】如图,已知∠BAC=∠ADE=90°,AD⊥BC,AC=DC.关于优弧CAD,下列结论正确的是( )
A.经过点B和点EB.经过点B,不一定经过点E
C.经过点E,不一定经过点BD.不一定经过点B和点E
【答案】B
【解析】
由条件可知BC垂直平分AD,可证△ABC≌△DBC,可得∠BAC=∠BDC=90°故∠BAC+∠BDC=180°则A、B、D、C四点共圆,即可得结论.
解:如图:设AD、BC交于M
∵AC=CD,AD⊥BC
∴M为AD中点
∴BC垂直平分AD
∴AB=DB
∵BC=BC,AC=CD
∴△ABC≌△DBC
∴∠BAC=∠BDC=90°
∴∠BAC+∠BDC=180°
∴A、B、D、C四点共圆
∴优弧CAD经过B,但不一定经过E
故选 B
练习册系列答案
相关题目