题目内容
【题目】阅读下列材料解决问题:
材料:古希腊著名数学家 毕达哥拉斯发现把数1,3,6,10,15,21…这些数量的(石子),都可以排成三角形,则称像这样的数为三角形数.
把数 1,3,6,10,15,21…换一种方式排列,即
1=1
1+2=3
1+2+3=6
1+2+3+4=10
1+2+3+4+5=15
…
从上面的排列方式看,把1,3,6,10,15,…叫做三角形数“名副其实”.
(1)设第一个三角形数为a1=1,第二个三角形数为a2=3,第三个三角形数为a3=6,请直接写出第n个三角形数为an的表达式(其中n为正整数).
(2)根据(1)的结论判断66是三角形数吗?若是请说出66是第几个三角形数?若不是请说明理由.
(3)根据(1)的结论判断所有三角形数的倒数之和T与2的大小关系并说明理由.
【答案】(1)an=(n为正整数);(2)是,是第11个三角形数;(3)T<2.理由参见解析.
【解析】
试题分析:(1)根据题意归纳总结得到一般性规律,写出即可;(2)66是三角形数,理由为:根据得出的规律确定出原因即可;(3)表示出T后,利用拆项法整理判断即可.
试题解析:(1)根据题意得:an=(n为正整数);(2)66是三角形数,理由如下:当=66时,解得:n=11或n=﹣12(舍去),则66是第11个三角形数;(2)T=++++…+=++++…+=2(1﹣+﹣+﹣+…+﹣)=,∵n为正整数,∴0<<1,则T<2.
练习册系列答案
相关题目