题目内容

【题目】如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D, 求证:BC=3AD.

【答案】证明:在△ABC中, ∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
又∵AD⊥AC,
∴∠DAC=90°,
∵∠C=30°
∴CD=2AD,∠BAD=∠B=30°,
∴AD=DB,
∴BC=CD+BD=AD+DC=AD+2AD=3AD
【解析】已知∠BAC=120°,AB=AC,∠B=∠C=30°,可得AD⊥AC,有CD=2AD,AD=BD.即可得证.
【考点精析】根据题目的已知条件,利用等腰三角形的性质和含30度角的直角三角形的相关知识可以得到问题的答案,需要掌握等腰三角形的两个底角相等(简称:等边对等角);在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网