题目内容

【题目】如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,连接DH交AG于点O.则下列结论①△ABF≌△CAE,②∠AHC=120°,③AH+CH=DH中,正确的是( )

A.①② B.①③ C.②③ D.①②③

【答案】D

【解析】

试题分析:由菱形ABCD中,AB=AC,易证得△ABC是等边三角形,则可得∠B=∠EAC=60°,由SAS即可证得△ABF≌△CAE;则可得∠BAF=∠ACE,利用三角形外角的性质,即可求得∠AHC=120°;在HD上截取HK=AH,连接AK,易得点A,H,C,D四点共圆,则可证得△AHK是等边三角形,然后由AAS即可证得△AKD≌△AHC,则可证得AH+CH=DH.

解:∵四边形ABCD是菱形,

∴AB=BC,

∵AB=AC,

∴AB=BC=AC,

即△ABC是等边三角形,

同理:△ADC是等边三角形

∴∠B=∠EAC=60°,

在△ABF和△CAE中,

∴△ABF≌△CAE(SAS);

故①正确;

∴∠BAF=∠ACE,

∵∠AEH=∠B+∠BCE,

∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°;

故②正确;

在HD上截取HK=AH,连接AK,

∵∠AHC+∠ADC=120°+60°=180°,

∴点A,H,C,D四点共圆,

∴∠AHD=∠ACD=60°,∠ACH=∠ADH,

∴△AHK是等边三角形,

∴AK=AH,∠AKH=60°,

∴∠AKD=∠AHC=120°,

在△AKD和△AHC中,

∴△AKD≌△AHC(AAS),

∴CH=DK,

∴DH=HK+DK=AH+CH;

故③正确;

故选D.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网