题目内容

【题目】阅读下面材料,并解决问题:

(1)如图(1),等边ABC内有一点P若点P到顶点A,B,C的距离分别为3,4,5欲求∠APB的度数,由于PA,PB不在一个三角形中,为了解决本题我们可以将ABP绕顶点A旋转到ACP′处,此时ACP′≌△ABP这样,就可以利用全等三角形知识,将三条线段的长度转化到一个三角形中从而求出∠APB的度数.

请将下列解题过程补充完整。

∵△ACP′≌△ABP,

AP′=  =3,CP′=   =4,   =APB.

由题意知旋转角∠PA P′=60°,∴△AP P′    三角形,

P P′=AP=3,A P′P=60°。

易证P P′C为直角三角形,且∠P P′C=90°,

∴∠APB=AP′C=A P′P+P P′C=    °+   °=   °.

请你利用第(1)题的解答思想方法,解答下面问题:

已知如图(2),ABC中,∠CAB=90°,AB=AC,E、FBC上的点且∠EAF=45°,

求证:EF2=BE2+FC2

【答案】(1)AP,BP,AP′C,等边,60,90,150;(2)见解析

【解析】

(1)根据旋转变换前后的两个三角形全等,全等三角形对应边相等,全等三角形对应角相等以及等边三角形的判定和勾股定理逆定理解答;

(2)把ABE绕点A逆时针旋转90°得到ACE,根据旋转的性质可得AE′=AECE′=CE,∠CAE′=∠BAE,∠ACE′=∠B,∠EAE′=90°,再求出EAF=45°,从而得到EAF=∠EAF,然后利用边角边证明EAFEAF全等,根据全等三角形对应边相等可得EF=EF,再利用勾股定理列式即可得证.

(1).AP,BP,AP′C,等边,60,90,150

(2)把ABE绕点A逆时针旋转90°得到ACE′,

由旋转的性质得,AE′=AE,CE′=CE,CAE′=BAE,ACE′=B,EAE′=90°,

∵∠EAF=45°,

∴∠E′AF=CAE′+CAF=BAE+CAF=BAC﹣EAF=90°﹣45°=45°,

∴∠EAF=E′AF,

EAFE′AF中,

∴△EAF≌△E′AF(SAS),

E′F=EF,

∵∠CAB=90°,AB=AC,

∴∠B=ACB=45°,

∴∠E′CF=45°+45°=90°,

由勾股定理得,E′F2=CE′2+FC2

EF2=BE2+FC2

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网