题目内容
(2013•台州)如图,在?ABCD中,点E,F分别在边DC,AB上,DE=BF,把平行四边形沿直线EF折叠,使得点B,C分别落在B′,C′处,线段EC′与线段AF交于点G,连接DG,B′G.
求证:(1)∠1=∠2;
(2)DG=B′G.
求证:(1)∠1=∠2;
(2)DG=B′G.
分析:(1)根据平行四边形得出DC∥AB,推出∠2=∠FEC,由折叠得出∠1=∠FEC=∠2,即可得出答案;
(2)求出EG=B′G,推出∠DEG=∠EGF,由折叠求出∠B′FG=∠EGF,求出DE=B′F,证△DEG≌△B′FG即可.
(2)求出EG=B′G,推出∠DEG=∠EGF,由折叠求出∠B′FG=∠EGF,求出DE=B′F,证△DEG≌△B′FG即可.
解答:证明:(1)∵在平行四边形ABCD中,DC∥AB,
∴∠2=∠FEC,
由折叠得:∠1=∠FEC,
∴∠1=∠2;
(2)∵∠1=∠2,
∴EG=GF,
∵AB∥DC,
∴∠DEG=∠EGF,
由折叠得:EC′∥B′F,
∴∠B′FG=∠EGF,
∵DE=BF=B′F,
∴DE=B′F,
∴△DEG≌△B′FG(SAS),
∴DG=B′G.
∴∠2=∠FEC,
由折叠得:∠1=∠FEC,
∴∠1=∠2;
(2)∵∠1=∠2,
∴EG=GF,
∵AB∥DC,
∴∠DEG=∠EGF,
由折叠得:EC′∥B′F,
∴∠B′FG=∠EGF,
∵DE=BF=B′F,
∴DE=B′F,
∴△DEG≌△B′FG(SAS),
∴DG=B′G.
点评:本题考查了平行四边形性质,折叠性质,平行线性质,全等三角形的性质和判定的应用,主要考查学生的推理能力.
练习册系列答案
相关题目