题目内容
如图1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板DEF的直角顶点D放在AC的中点上(直角三角板的短直角边为DE,长直角边为DF),将直角三角板DEF绕D点按逆时针方向旋转.
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
(1)在图1中,DE交AB于M,DF交BC于N.①证明DM=DN;②在这一过程中,直角三角板DEF与△ABC的重叠部分为四边形DMBN,请说明四边形DMBN的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;
(2)继续旋转至如图2的位置,延长AB交DE于M,延长BC交DF于N,DM=DN是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
(3)继续旋转至如图3的位置,延长FD交BC于N,延长ED交AB于M,DM=DN是否仍然成立?若成立,请给出写出结论,不用证明.
(1)①如图1,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC=AD,∠BDC=90°,
∴∠ABD=∠C=45°,
∵∠MDB+∠BDN=∠CDN+∠BDN=90°,
∴∠MDB=∠NDC,
∴△BMD≌△CND(ASA),
∴DM=DN;
②四边形DMBN的面积不发生变化;
由①知△BMD≌△CND,
∴S△BMD=S△CND,
∴S四边形DMBN=S△DBN+S△DMB=S△DBN+S△DNC=S△DBC=
S△ABC=
×(
)2=
;
(2)DM=DN仍然成立;
证明:如图2,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴∠DBM=∠DCN=135°,
∵∠NDC+∠CDM=∠BDM+∠CDM=90°,
∴∠CDN=∠BDM,
则在△BMD和△CND中,
,
∴△BMD≌△CND(ASA),
∴DM=DN.
(3)DM=DN.
∴DB=DC=AD,∠BDC=90°,
∴∠ABD=∠C=45°,
∵∠MDB+∠BDN=∠CDN+∠BDN=90°,
∴∠MDB=∠NDC,
∴△BMD≌△CND(ASA),
∴DM=DN;
②四边形DMBN的面积不发生变化;
由①知△BMD≌△CND,
∴S△BMD=S△CND,
∴S四边形DMBN=S△DBN+S△DMB=S△DBN+S△DNC=S△DBC=
1 |
2 |
1 |
2 |
| ||
2 |
1 |
4 |
(2)DM=DN仍然成立;
证明:如图2,连接DB,在Rt△ABC中,AB=BC,AD=DC,
∴DB=DC,∠BDC=90°,
∴∠DCB=∠DBC=45°,
∴∠DBM=∠DCN=135°,
∵∠NDC+∠CDM=∠BDM+∠CDM=90°,
∴∠CDN=∠BDM,
则在△BMD和△CND中,
|
∴△BMD≌△CND(ASA),
∴DM=DN.
(3)DM=DN.
练习册系列答案
相关题目