题目内容

【题目】如图1,平面直角坐标系中,直线AB:y=﹣x+bx轴于点A(8,0),交y轴正半轴于点B.

(1)求点B的坐标;

(2)如图2,直线ACy轴负半轴于点C,AB=BC,P为线段AB上一点,过点Py轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求dt之间的函数关系式;

(3)(2)的条件下,MCA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.

【答案】(1) B(0,6);(2) d=﹣t+10;(3)见解析.

【解析】(1)A(8,0)代入y=﹣x+b,可求解析式,再求B的坐标;(2)先求点C(0,﹣4),再求直线AC解析式,可设点P(t,﹣t+6),Q(t, t﹣4),所以d=(﹣t+6)﹣(t﹣4);过点M作MG⊥PQ于G,证△OAC≌△GMQ,得QG=OC=4,GM=OA=8;过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,得四边形GHRM是矩形,得HR=GM=8;设GH=RM=k,由△HNQ≌△RMN,得HN=RM=k,NR=QH=4+k,由HR=HN+NR,得k+4+k=8,可得GH=NH=RM=2,HQ=6,由Q(t,t﹣4),得N(t+2,t﹣4+6),代入y=﹣x+6,得t+2=﹣(t+2)+6,求出t=2,再求P(2,),N(4,3),可得PH=,NH=2,最后PN=.

解:(1)∵y=﹣x+b交x轴于点A(8,0),

∴0=﹣×8+b,b=6,

∴直线AB解析式为y=﹣x+6,令x=0,y=6,B(0,6);

(2)∵A(8,0),B(0,6),

∴OA=8,OB=6,

∵∠AOB=90°,

∴AB=10=BC,

∴OC=4,

∴点C(0,﹣4),设直线AC解析式为y=kx+b’,

,

∴直线AC解析式为y=x﹣4,

∵P在直线y=﹣x+6上,

∴可设点P(t,﹣t+6),

∵PQ∥y轴,且点Q在y=x﹣4 上,

∴Q(t, t﹣4),

∴d=(﹣t+6)﹣(t﹣4)=﹣t+10;

(3)过点M作MG⊥PQ于G,

∴∠QGM=90°=∠COA,

∵PQ∥y轴,

∴∠OCA=∠GQM,

∵CQ=AM,

∴AC=QM,在△OAC与△GMQ中,

∴△OAC≌△GMQ,

∴QG=OC=4,GM=OA=8,过点N作NH⊥PQ于H,过点M作MR⊥NH于点R,

∴∠MGH=∠RHG=∠MRH=90°,

∴四边形GHRM是矩形,

∴HR=GM=8,可设GH=RM=k,

∵△MNQ是等腰直角三角形,

∴∠QMN=90°,NQ=NM,

∴∠HNQ+∠HQN=90°,

∴∠HNQ+∠RNM=90°,

∴∠RNM=∠HQN,

∴△HNQ≌△RMN,

∴HN=RM=k,NR=QH=4+k,

∵HR=HN+NR,

∴k+4+k=8,

∴k=2,

∴GH=NH=RM=2,

∴HQ=6,

∵Q(t,t﹣4),

∴N(t+2,t﹣4+6)即 N(t+2,t+2)

∵N在直线AB:y=﹣x+6上,

t+2=﹣(t+2)+6,

∴t=2,

∴P(2,),N(4,3),

∴PH=,NH=2,

∴PN=

=.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网