题目内容
【题目】如图,在等腰Rt△ABC中,∠BAC=90°,BC=2,点P是△ABC内部的一个动点,且满足∠PBC=∠PCA,则线段AP长的最小值为( )
A.0.5B.﹣1C.2﹣D.
【答案】C
【解析】
先计算出∠PBC+∠PCB=45°,则∠BPC=135°,利用圆周角定理可判断点P在以BC为弦的⊙O上,如图,连接OA交于P′,作所对的圆周角∠BQC,利用圆周角定理计算出∠BOC=90°,从而得到△OBC为等腰直角三角形,四边形ABOC为正方形,所以OA=BC=2,OB=,根据三角形三边关系得到AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),于是得到AP的最小值.
解:∵△ABC为等腰直角三角形,
∴∠ACB=45°,即∠PCB+∠PCA=45°,
∵∠PBC=∠PCA,
∴∠PBC+∠PCB=45°,
∴∠BPC=135°,
∴点P在以BC为弦的⊙O上,如图,连接OA交于P′,
作所对的圆周角∠BQC,则∠BCQ=180°﹣∠BPC=45°,
∴∠BOC=2∠BQC=90°,
∴△OBC为等腰直角三角形,
∴四边形ABOC为正方形,
∴OA=BC=2,
∴OB=BC=,
∵AP≥OA﹣OP(当且仅当A、P、O共线时取等号,即P点在P′位置),
∴AP的最小值为2﹣.
故选:C.
练习册系列答案
相关题目