题目内容
【题目】如图,以ABCD的边BC为直径的⊙O交对角线AC于点E,交CD于点F.连结BF.过点E作EG⊥CD于点G,EG是⊙O的切线.
(1)求证:ABCD是菱形;
(2)已知EG=2,DG=1.求CF的长.
【答案】(1)见解析;(2)3
【解析】
(1)如图,连接OE,根据切线的性质得到OE⊥EG,根据平行四边形的性质得到OE∥CD∥AB,推出AB=BC,于是得到结论;
(2)如图,连接BD,由(1)得,CE:AC=1:2,得到点E是AC的中点,根据圆周角定理得到BF⊥CD,根据相似三角形的性质得到DF=2,BF=4,由勾股定理即可得到结论.
(1)证明:如图,连接OE,
∵EG是⊙O的切线,
∴OE⊥EG,
∵EG⊥CD,
∴四边形ABCD是平行四边形,
∴OE∥CD∥AB,
∴∠CEO=∠CAB,
∵OC=OE,
∴∠CEO=∠ECO,
∴∠ACB=∠CAB,
∴AB=BC,
∴ABCD是菱形;
(2)如图,连接BD,
由(1)得,OE∥CD,OC=OB,
∴AE=CE,
∴CE:AC=1:2,
∴点E是AC的中点,
∵四边形ABCD是菱形,
∴BD经过点E,
∵BC是⊙O的直径,
∴BF⊥CD,
∵EG⊥CD,
∴EG∥BF,
∴△DGE∽△DFB,
∴DG:DF=GE:BF=DE:BD=1:2,
∴DF=2,BF=4,
在Rt△BFC中,设CF=x,则BC=x+2,
由勾股定理得,x2+42=(x+2)2,
解得:x=3,
∴CF=3.
练习册系列答案
相关题目