题目内容
【题目】直线 AB∥CD,直线 a 分别交 AB、CD 于点 E、F,点 M 在线段 EF 上,点 P 是 直线 CD 上的一个动点(点 P 不与点 F 重合).
(1)如图 1,当点 P 在射线 FC 上移动时,∠FMP+∠FPM 与∠AEF 有什么数量关系? 请说明理由;
(2)如图 2,当点 P 在射线 FD 上移动时,∠FMP+∠FPM 与∠AEF 有什么数量关系? 请说明理由.
【答案】(1)∠AEF=∠MPF+∠FPM;(2)∠FMP+∠FPM+∠AEF=180°;
【解析】
(1)由AB∥CD,利用两直线平行,同旁内角互补,可得∠AEF十∠EFC=180°,又由三角形内角和定理,即可得∠FMP+∠FPM+∠EFC=180°,则可得∠FMP+∠FPM=∠AEF;
(2)由AB∥CD,利用两直线平行,内错角相等,即可证得∠AEF=∠EFD,又由三角形内角和定理,即可得∠FMP+∠FPM+∠EFD=180°,则可得∠FMP+∠FPM+∠AEF=180°.
(1)∠FMP+∠FPM=∠AEF,
理由:∵AB∥CD,
∴∠AEF=∠DFM,
又∵∠FMP+∠FPM=∠DFM,
∴∠FMP+∠FPM=∠AEF;
(2)∠FMP+∠FPM与∠AEF互补(或∠FMP+∠FPM+∠AEF=180)…(8分)
理由:∵AB∥CD,
∴∠AEF=∠EFD(两直线平行,内错角相等),
∵∠FMP+∠FPM+∠EFD=180(三角形内角和定理),
∴∠FMP+∠FPM+∠AEF=180(等量代换).
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目