题目内容

如图,矩形ABCD中,AB=3,BC=4,,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为         
或3.

试题分析:当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.
②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.
试题解析:当△CEB′为直角三角形时,有两种情况:
①当点B′落在矩形内部时,如图1所示.

连结AC,
在Rt△ABC中,AB=3,BC=4,
∴AC=
∵∠B沿AE折叠,使点B落在点B′处,
∴∠AB′E=∠B=90°,
当△CEB′为直角三角形时,只能得到∠EB′C=90°,
∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,
∴EB=EB′,AB=AB′=3,
∴CB′=5-3=2,
设BE=x,则EB′=x,CE=4-x,
在Rt△CEB′中,
∵EB′2+CB′2=CE2
∴x2+22=(4-x)2,解得x=
∴BE=
②当点B′落在AD边上时,如图2所示.

此时ABEB′为正方形,
∴BE=AB=3.
综上所述,BE的长为或3.
考点: 翻折变换(折叠问题).
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网