题目内容
【题目】某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格﹣每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
【答案】(1)180;(2)当x=40时,y的值最大,最大值是7200;(3)46天销售利润不低于5400元.
【解析】
(1)根据待定系数法解出一次函数解析式即可,进而得出第10天日销售量;
(2)当1≤x<50时,y=-2x2+160x+4000;当50≤x≤90时,y=-120x+12000,分别求出各段上的最大值,比较即可得到结论;
(3)根据1≤x<50和50≤x≤90时,由y≥5400求得x的范围,据此可得销售利润不低于5400元的天数.
解:(1)∵n与x成一次函数,
∴设n=kx+b,将x=1,n=198,x=3,n=194代入,得:
,
解得:.
所以n关于x的一次函数表达式为n=﹣2x+200,
故第10天日销售量:n=﹣20+200=180(件);
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
,
当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,
∵﹣2<0,
∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=﹣120x+12000,
∵﹣120<0,
∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,
解得:10≤x≤70,
∵1≤x<50,
∴10≤x<50;
当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,
解得:x≤55,
∵50≤x≤90,
∴50≤x≤55,
综上所述,10≤x≤55,
故在该产品销售的过程中,共有46天销售利润不低于5400元.