题目内容

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.
求证:中点四边形EFGH是平行四边形;

(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

【答案】
(1)

证明:如图1中,连接BD.

∵点E,H分别为边AB,DA的中点,

∴EH∥BD,EH= BD,

∵点F,G分别为边BC,CD的中点,

∴FG∥BD,FG= BD,

∴EH∥FG,EH=GF,

∴中点四边形EFGH是平行四边形.


(2)

四边形EFGH是菱形.

证明:如图2中,连接AC,BD.

∵∠APB=∠CPD,

∴∠APB+∠APD=∠CPD+∠APD

即∠APC=∠BPD,

在△APC和△BPD中,

∴△APC≌△BPD,

∴AC=BD

∵点E,F,G分别为边AB,BC,CD的中点,

∴EF= AC,FG= BD,

∵四边形EFGH是平行四边形,

∴四边形EFGH是菱形.


(3)

四边形EFGH是正方形.

证明:如图2中,

设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.

∵△APC≌△BPD,

∴∠ACP=∠BDP,

∵∠DMO=∠CMP,

∴∠COD=∠CPD=90°,

∵EH∥BD,AC∥HG,

∴∠EHG=∠ENO=∠BOC=∠DOC=90°,

∵四边形EFGH是菱形,

∴四边形EFGH是正方形.


【解析】(1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.(2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.(3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网