题目内容
如图,已知△ABC中,∠=90°,∠B=60°,AC=4,等边△DEF的一边在直角边AC上移动,当点E与点c重合时,点D恰好落在AB边上,
(1)求等边△DEF的边长;
(2)请你探索,在移动过程中,线段CE与图中哪条线段始终保持相等,并说明理由;
(3)若设线段CE为x,在移动过程中,等边△BEF与Rt△ABC两图形重叠部分的面积为y.请你写出y与x的函数关系式,并写出自变量x的取值范围.
答案:
解析:
解析:
|
(1)当E点与点C重合时,点D恰好落在AB边上,∵∠DEA=60°, ∠A=30°.∴∠CDA=90°,在Rt△ACD中,DC= (2)设CE的长为x,则AE=4-x,在Rt△AHE中, EH= (3)由(2)得DH= ∴y= |
练习册系列答案
相关题目