题目内容

【题目】如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.

(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】
(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.

所以双曲线的解析式为y=﹣

设点B的坐标为(m,﹣m).

∵点B在双曲线上,

∴﹣m2=﹣4,解得m=2或m=﹣2.

∵点B在第四象限,

∴m=2.

∴B(2,﹣2).

将点A、B、C的坐标代入得:

解得:

∴抛物线的解析式为y=x2﹣3x.


(2)解:如图1,连接AC、BC.

令y=0,则x2﹣3x=0,

∴x=0或x=3,

∴C(3,0),

∵A(﹣1,4),B(2,﹣2),

∴直线AB的解析式为y=﹣2x+2,

∵点D是直线AB与x轴的交点,

∴D(1,0),

∴SABC=SADC+SBDC= ×2×4+ ×2×2=6;


(3)解:存在,理由:如图2,

由原抛物线的解析式为y=x2﹣3x=(x﹣ 2

∴原抛物线的顶点坐标为( ,﹣ ),

∴抛物线向左平移 个单位,再向上平移 个单位,

而平移前A(﹣1,4),B(2,﹣2),

∴平移后点A(﹣ ),B( ),

∴点A关于y轴的对称点A'( ),

连接A'B并延长交y轴于点P,连接AP,

由对称性知,∠APE=∠BPE,

∴△APB的内切圆的圆心在y轴上,

∵B( ),A'( ),

∴直线A'B的解析式为y=3x﹣

∴P(0,﹣ ).


【解析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;
(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;
(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网