题目内容
【题目】如图1,经过原点的抛物线y=ax2+bx+c与x轴的另一个交点为点C;与双曲线y= 相交于点A,B;直线AB与分别与x轴、y轴交于点D,E.已知点A的坐标为(﹣1,4),点B在第四象限内且到x轴、y轴的距离相等.
(1)求双曲线和抛物线的解析式;
(2)计算△ABC的面积;
(3)如图2,将抛物线平移至顶点在原点上时,直线AB随之平移,试判断:在y轴的负半轴上是否存在点P,使△PAB的内切圆的圆心在y轴上?若存在,求出点P的坐标;若不存在,请说明理由.
【答案】
(1)解:把点A的坐标代入双曲线的解析式得:k=﹣1×4=﹣4.
所以双曲线的解析式为y=﹣ .
设点B的坐标为(m,﹣m).
∵点B在双曲线上,
∴﹣m2=﹣4,解得m=2或m=﹣2.
∵点B在第四象限,
∴m=2.
∴B(2,﹣2).
将点A、B、C的坐标代入得: ,
解得: .
∴抛物线的解析式为y=x2﹣3x.
(2)解:如图1,连接AC、BC.
令y=0,则x2﹣3x=0,
∴x=0或x=3,
∴C(3,0),
∵A(﹣1,4),B(2,﹣2),
∴直线AB的解析式为y=﹣2x+2,
∵点D是直线AB与x轴的交点,
∴D(1,0),
∴S△ABC=S△ADC+S△BDC= ×2×4+ ×2×2=6;
(3)解:存在,理由:如图2,
由原抛物线的解析式为y=x2﹣3x=(x﹣ )2﹣ ,
∴原抛物线的顶点坐标为( ,﹣ ),
∴抛物线向左平移 个单位,再向上平移 个单位,
而平移前A(﹣1,4),B(2,﹣2),
∴平移后点A(﹣ , ),B( , ),
∴点A关于y轴的对称点A'( , ),
连接A'B并延长交y轴于点P,连接AP,
由对称性知,∠APE=∠BPE,
∴△APB的内切圆的圆心在y轴上,
∵B( , ),A'( , ),
∴直线A'B的解析式为y=3x﹣ ,
∴P(0,﹣ ).
【解析】(1)首先将点A的坐标代入反比例函数的解析式求得k的值,然后再求得B的值,最后根据点A的坐标求出双曲线的解析式,进而得出点B的坐标,最后,将点A、B、O三点的坐标代入抛物线的解析式,求得a、b、c的值即可;
(2)由点A和点B的坐标可求得直线AB的解析式,然后将y=0可求得点D的横坐标,最后用三角形的面积和求解即可;
(3)先确定出平移后点A,B的坐标,进而求出点A关于y轴的对称点的坐标,求出直线BA'的解析式即可得出点P的坐标.
【题目】雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:
类别 | 雾霾天气的主要成因 | 百分比 |
A | 工业污染 | 45% |
B | 汽车尾气排放 | m |
C | 城中村燃煤问题 | 15% |
D | 其他(绿化不足等) | n |
(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;
(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?
(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)