题目内容
【题目】己知一次函数的图象与反比例函数的图象交于点,与轴交于点,若,.
(1)求反比例函数的解析式:
(2)若点为轴上一动点,当是等腰三角形时,直接写出点的坐标.
【答案】(1);(2)(0,0)或(10,0)或(13,0)或(,0).
【解析】
(1)先求出OB,进而求出AD,得出点A坐标,最后用待定系数法即可得出结论;
(2)分三种情况,①当AB=PB时,得出PB=5,即可得出结论;
②当AB=AP时,利用点P与点B关于AD对称,得出DP=BD=4,即可得出结论;
③当PB=AP时,先表示出AP2=(9-a)2+9,BP2=(5-a)2,进而建立方程求解即可得出结论.
解:(1)如图1,过点A作AD上x轴于D,
在中
将点A坐标代入反比例函数y=中得,
.
∴反比例函数的解析式为,
(2)由(1)知,AB=5,
∵△ABP是等腰三角形,
∴①当AB=PB时,
∴PB=5,
∴P(0,0)或(10,0),
②当AB=AP时,如图2,
由(1)知,BD=4,
易知,点P与点B关于AD对称,
∴DP=BD=4,
∴OP=5+4+4=13,∴P(13,0),
③当PB=AP时,设P(a,0),
∵A(9,3),B(5,0),
∴AP2=(9-a)2+9,BP2=(5-a)2,
∴(9-a)2+9=(5-a)2
∴a=,
∴P(,0),
故满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).
【题目】如图,在边长为的正方形四个角上,分别剪去大小相等的等腰直角三角形,当三角形的直角边由小变大时,阴影部分的面积也随之发生变化,它们的变化情况如下:
三角形的直角边长/ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
阴影部分的面积/ | 398 | 392 | 382 | 368 | 350 | 302 | 272 | 200 |
(1)在这个变化过程中,自变量、因变量各是什么?
(2)请将上述表格补充完整;
(3)当等腰直角三角形的直角边长由增加到时,阴影部分的面积是怎样变化的?
(4)设等腰直角三角形的直角边长为,图中阴影部分的面积为,写出与的关系式.
【题目】某政府部门进行公务员招聘考试,其中三人中录取一人,他们的成绩如下:
人 | 测试成绩 | ||
题目 | 甲 | 乙 | 丙 |
文化课知识 | 74 | 87 | 69 |
面试 | 58 | 74 | 70 |
平时表现 | 87 | 43 | 65 |
(1)按照平均成绩甲、乙、丙谁应被录取?
(2)若按照文化课知识、面试、平时表现的成绩已4:3:1的比例录取,甲、乙、丙谁应被录取?