题目内容
【题目】如图,港口A在观测站O的正东方向,OA=6,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为________.
【答案】
【解析】
过点A作AD⊥OB于D.先解Rt△AOD,得出AD=OA=3,再由△ABD是等腰直角三角形,得出BD=AD=3,则AB=AD=.
解:如图,过点A作AD⊥OB于D.
在Rt△AOD中,
∵∠ADO=90°,∠AOD=30°,OA=6,
∴AD=OA=3.
在Rt△ABD中,
∵∠ADB=90°,∠B=∠CAB-∠AOB=75°30°=45°,
∴BD=AD=3,
∴AB=AD=.
即该船航行的距离(即AB的长)为km.
故答案为:.
【题目】某校开展“传统文化”知识竞赛,已知该校七年级男生和女生各有学生200人,从中各随机抽取20名学生进行抽样调查,获得了他们知识竞赛成绩(满分100分),并进行整理,得到下面部分信息.
男生:74 97 96 89 98 74 65 76 72 78 99 72 97 76 99 74 99 73 98 74
女生:76 87 93 65 78 94 89 68 95 54 89 87 89 89 77 94 86 87 92 91
成绩 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
男生 | 0 | 1 | 10 | 1 | 8 |
女生 | 1 | 2 | a | 8 | 6 |
平均数、中位数、众数、方差如表所示:
成绩 | 平均数 | 中位数 | 众数 | 方差 |
男生 | 84 | 77 | 74 | 145.4 |
女生 | 84 | b | 89 | 115.6 |
根据以上信息,回答下列问题:
(1)a= ,b= ;
(2)你认为七年级学生中,男生还是女生的总体成绩较好,为什么?(至少从两个不同的角度说明)
(3)若在此次竞赛中,该校七年级学生中有四人取得100分的好成绩,且恰好是两个男生两个女生.现从这四人中随机抽取两人参加市里的竞赛,求这两人恰好是一男一女的概率.