题目内容
【题目】如图,在ABCD中,过点A作AE⊥DC,垂足为E,连接BE,F为BE上一点,且∠AFE=∠D.
(1)求证:△ABF∽△BEC;
(2)若AD=5,AB=8,AE∶AD=4∶5,求AF的长.
【答案】(1)见解析;(2)2.
【解析】(1)由平行四边形的性质得出AB∥CD,AD∥BC,AD=BC,得出∠D+∠C=180°,∠ABF=∠BEC,证出∠C=∠AFB,即可得出结论;
(2)由勾股定理求出BE,由AE∶AD=4∶5,求出AE,再由相似三角形的性质求出AF的长.
(1)证明:∵四边形ABCD是平行四边形,
∴AB∥DC,AD∥BC,
∴∠D+∠C=180°,∠ABF=∠BEC.
∵∠AFB+∠AFE=180°,∠AFE=∠D,
∴∠C=∠AFB,
∴△ABF∽△BEC.
(2)∵AE⊥DC,AB∥DC,
∴∠AED=∠BAE=90°.
∵AD=5, AE∶AD=4∶5,
∴AE=AD×=5×=4,
在Rt△ABE中,根据勾股定理,得
BE===4.
在ABCD中,BC=AD=5.
由(1)得△ABF∽△BEC,
∴=,即=,
∴AF=2.
练习册系列答案
相关题目