题目内容

【题目】如图,等腰Rt△ABC中,∠BAC=90°,AD⊥BC于D,∠ABC的平分线分别交AC、AD于E、F两点,M为EF的中点,延长AM交BC于点N,连接DM.下列结论:①DF=DN;③AE=CN;③△DMN是等腰三角形;④∠BMD=45°,其中正确的结论个数是(

A.1个
B.2个
C.3个
D.4个

【答案】D
【解析】解:∵∠BAC=90°,AC=AB,AD⊥BC,
∴∠ABC=∠C=45°,AD=BD=CD,∠ADN=∠ADB=90°,
∴∠BAD=45°=∠CAD,
∵BE平分∠ABC,
∴∠ABE=∠CBE= ∠ABC=22.5°,
∴∠BFD=∠AEB=90°﹣22.5°=67.5°,
∴∠AFE=∠BFD=∠AEB=67.5°,
∴AF=AE,
∵M为EF的中点,
∴AM⊥BE,
∴∠AMF=∠AME=90°,
∴∠DAN=90°﹣67.5°=22.5°=∠MBN,
在△FBD和△NAD中

∴△FBD≌△NAD,
∴DF=DN,∴①正确;
在△AFB和△△CNA中

∴△AFB≌△CAN,
∴AF=CN,
∵AF=AE,
∴AE=CN,∴②正确;
∵∠ADB=∠AMB=90°,
∴A、B、D、M四点共圆,
∴∠ABM=∠ADM=22.5°,
∴∠DMN=∠DAN+∠ADM=22.5°+22.5°=45°,∴④正确;
∵∠DNA=∠C+∠CAN=45°+22.5°=67.5°,
∴∠MDN=180°﹣45°﹣67.5°=67.5°=∠DNM,
∴DM=MN,∴△DMN是等腰三角形,∴③正确;
即正确的有4个,
故选D.

求出BD=AD,∠DBF=∠DAN,∠BDF=∠ADN,证△DFB≌△DAN,即可判断①,证△ABF≌△CAN,推出CN=AF=AE,即可判断②;根据A、B、D、M四点共圆求出∠ADM=22.5°,即可判断④,根据三角形外角性质求出∠DNM,求出∠MDN=∠DNM,即可判断③.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网