题目内容
【题目】如图,在四边形ABCD中,AB∥CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.
(1)求证:△ABE≌△CDF;
(2)若AC与BD交于点O,求证:AC与BD互相平分.
【答案】见解析
【解析】分析:(1)用ASA判定两三角形全等即可证明.
(2)只要证明四边形ABCD是平行四边形即可解决问题.
详解:
(1)∵BF=DE,
∴BF-EF=DE-EF,
即BE=DF,
∵AE⊥BD,CF⊥BD,
∴∠AEB=∠CFD=90°,
∵AB=CD,
∴Rt△ABE≌Rt△CDF(HL);
(2)连接AC,如图:
∵△ABE≌△CDF,
∴∠ABE=∠CDF,
∴AB∥CD,
∵AB=CD,
∴四边形ABCD是平行四边形,
∴AC与BD互相平分.
练习册系列答案
相关题目