题目内容
【题目】如图,∠AOB=120°,OC是∠AOB内部任意一条射线,OD,OE分别是∠AOC,∠BOC的角平分线,下列叙述正确的是( )
A. ∠AOD+∠BOE=60°B. ∠AOD=∠EOC
C. ∠BOE=2∠CODD. ∠DOE的度数不能确定
【答案】A
【解析】
本题是对角的平分线的性质的考查,角平分线将角分成相等的两部分.结合选项得出正确结论.
A、∵OD、OE分别是∠AOC、∠BOC的平分线,
∴∠BOE+∠AOD=∠EOC+∠DOC=∠DOE=(∠BOC+∠AOC)=∠AOB=60°.
故本选项叙述正确;
B、∵OD是∠AOC的角平分线,
∴∠AOD=∠AOC.
又∵OC是∠AOB内部任意一条射线,
∴∠AOC=∠EOC不一定成立.
故本选项叙述错误;
C、∵OC是∠AOB内部任意一条射线,
∴∠BOE=∠AOC不一定成立,
∴∠BOE=2∠COD不一定成立.
故本选项叙述错误;
D、∵OD、OE分别是∠AOC、∠BOC的平分线,
∴∠DOE=(∠BOC+∠AOC)=∠AOB=60°.
故本选项叙述错误;
故选A.
练习册系列答案
相关题目