题目内容
用配方法解方程x2-4x+3=0的过程中,正确的是
- A.x2-4x+(-2)2=7;
- B.x2-4x+(-2)2=1
- C.(x+2)2=1
- D.(x-1)2=2
B
分析:配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
解答:∵x2-4x+3=0
∴x2-4x=-3
∴x2-4x+4=-3+4
∴(x-2)2=1
故选B.
点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
分析:配方法的一般步骤:
(1)把常数项移到等号的右边;
(2)把二次项的系数化为1;
(3)等式两边同时加上一次项系数一半的平方.
解答:∵x2-4x+3=0
∴x2-4x=-3
∴x2-4x+4=-3+4
∴(x-2)2=1
故选B.
点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.
练习册系列答案
相关题目
用配方法解方程x2+mx+n=0时,此方程可变形为( )
A、(x+
| ||||
B、(x+
| ||||
C、(x-
| ||||
D、(x-
|