题目内容
【题目】(1)问题发现:如图1,在Rt△ABC中,AB=AC,D为BC边上一点(不与点B、C重合)将线段AD绕点A逆时针旋转90°得到AE,连接EC,则线段BD与CE的数量关系是 ,位置关系是 ;
(2)探究证明:如图2,在Rt△ABC与Rt△ADE中,AB=AC,AD=AE,将△ADE绕点A旋转,使点D落在BC的延长线上时,连接EC,写出此时线段AD,BD,CD之间的等量关系,并证明;
(3)拓展延仲:如图3,在四边形ABCF中,∠ABC=∠ACB=∠AFC=45°.若BF=13,CF=5,请直接写出AF的长.
【答案】(1)BD=CE,BD⊥CE;(2)2AD2=BD2+CD2,理由详见解析;(3).
【解析】
(1)证明△BAD≌△CAE,根据全等三角形的性质解答;
(2)证明△BAD≌△CAE,得到BD=CE,根据勾股定理计算即可;
(3)如图3,作辅助线,构建全等三角形,证明△BAF≌△CAG,得到CG=BF=13,证明是直角三角形,根据勾股定理计算即可.
解:(1)在Rt△ABC中,AB=AC,
∴∠B=∠ACB=90°,
∵∠BAC=∠DAE=90°,
∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,
在△BAD和△CAE中,
∵ ,
∴△BAD≌△CAE(SAS),
∴BD=CE,∠B=∠ACE=45°,
∵∠ACB=45°,
∴,
故答案为:BD=CE,BD⊥CE;
(2)2AD2=BD2+CD2,理由是:如图2,
∵∠BAC=∠DAE=90°,
∴∠BAD=∠CAE,
在△ABD和△ACE中,
∵,
∵△BAD≌△CAE(SAS),
∴BD=CE,∠B=∠ACE=45°,
∴∠BCE=∠ACB+∠ACE=45°+45°=90°,
∴DE2=CE2+CD2,
∵AD=AE,∠DAE=90°,
∴,
∴2AD2=BD2+CD2;
(3)如图3,将AF绕点A逆时针旋转90°至AG,连接CG、FG,
则△FAG是等腰直角三角形,
∴∠AFG=45°,
∵∠AFC=45°,
∴∠GFC=90°,
同理得:△BAF≌△CAG,
∴CG=BF=13,
Rt△CGF中,∵CF=5,
∴FG=12,
∵△FAG是等腰直角三角形,
∴.