题目内容
如图,在等腰△ABC中,∠ABC=90°,D为底边AC中点,过D点作DE⊥DF,交AB于E,交BC于F.若AE=12,FC=5,
(1)试说明DE=DF;
(2)求EF长.
(1)试说明DE=DF;
(2)求EF长.
分析:(1)连结BD,根据等腰三角形的性质可以得出∠ABD=∠CBD=45°,再证明△BED≌△CFD就可以得出结论;
(2)由△BED≌△CFD可以得出BE=CF,就可以求出BF的值,在Rt△BEF中,由勾股定理就可以求出结论.
(2)由△BED≌△CFD可以得出BE=CF,就可以求出BF的值,在Rt△BEF中,由勾股定理就可以求出结论.
解答:解:(1)证明:连结BD,
∵AB=AC,∠ABC=90°,
∴∠B=∠C=45°.
∵D是AC的中点,
∴BD=AD=CD=
AC,∠ABD=∠CBD=45°,BD⊥AC,
∴∠ABD=∠C,∠BDC=90°,
即∠CDF+∠BDF=90°.
∵DE⊥DF,
∴∠EDF=90°.
即∠EDB+∠BDF=90°,
∴∠EDB=∠CDF.
在△BED和△CFD中
,
∴△BED≌△CFD(ASA),
∴DE=DF.
(2)∵△BED≌△CFD,
∴BE=CF.
∵AB=AE+BE,
∴AB=AE+CF.
∵AE=12,FC=5,
∴AB=17,
∴BF=12.
在Rt△EBF中,由勾股定理,得
EF=13.
答:EF=13.
∵AB=AC,∠ABC=90°,
∴∠B=∠C=45°.
∵D是AC的中点,
∴BD=AD=CD=
1 |
2 |
∴∠ABD=∠C,∠BDC=90°,
即∠CDF+∠BDF=90°.
∵DE⊥DF,
∴∠EDF=90°.
即∠EDB+∠BDF=90°,
∴∠EDB=∠CDF.
在△BED和△CFD中
|
∴△BED≌△CFD(ASA),
∴DE=DF.
(2)∵△BED≌△CFD,
∴BE=CF.
∵AB=AE+BE,
∴AB=AE+CF.
∵AE=12,FC=5,
∴AB=17,
∴BF=12.
在Rt△EBF中,由勾股定理,得
EF=13.
答:EF=13.
点评:本题考查了等腰直角三角形的性质的运用,全等三角形的判定与性质的运用,勾股定理的运用,解答时证明三角形全等是关键.
练习册系列答案
相关题目
如图,在等腰△ABC中,AB=AC,BE⊥AC,垂足为E,则∠1与∠A的关系式为( )
A、∠1=∠A | ||
B、∠1=
| ||
C、∠1=2∠A | ||
D、无法确定 |