题目内容
【题目】如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y轴上,如果矩形与矩形OABC关于点O位似,且矩形的面积等于矩形OABC面积的,那么点的坐标是_____.
【答案】(﹣2,3)或(2,﹣3)
【解析】
根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.
解:∵矩形OA'B'C'与矩形OABC关于点O位似,
∴矩形OA'B'C'∽矩形OABC,
∵矩形OA'B'C'的面积等于矩形OABC面积的,
∴矩形OA'B'C'与矩形OABC的相似比为,
∵点B的坐标为(﹣4,6),
∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),
故答案为:(﹣2,3)或(2,﹣3).
练习册系列答案
相关题目