题目内容
【题目】如图,在边长为2的正方形ABCD中,P是BC边上一动点(点P不与B、C重合),将△ABP沿直线AP翻折,点B落在点E处;在CD上有一点M,使得将△CMP沿直线MP翻折后,点C落在直线PE上的点F处,直线PE交CD于点N,连接MA、NA,则以下结论:①△CMP∽△BPA;②四边形AMCB的面积最大值为2.5;③△ADN≌△AEN;④线段AM的最小值为2.5;⑤当P为BC中点时,AE为线段NP的中垂线.正确的有_____(只填序号)
【答案】①②③④
【解析】分析:①正确.只要证明∠CPM=∠PAB,∠C=∠B=90°,即可;
②正确,设PB=x,构建二次函数,利用二次函数性质解决问题即可;
③正确.根据HL即可证明;
④正确,作MG⊥AB于G,因为AM=,所以AG最小时AM最小,构建二次函数,求得AG的最小值为,AM的最小值为.
⑤错误,设ND=NE=y,在Rt△PCN中,利用勾股定理求出y即可解决问题.
详解:①由翻折可知,∠APE=∠APB,∠MPC=∠MPN,
∴∠APE+∠MPF=∠CPN+∠BPE=90°,
∴∠CPM+∠APB=90°,∵∠APB+∠PAB=90°,
∴∠CPM=∠PAB,∵∠C=∠B=90°,
∴△CMP∽△BPA.故①正确;
②设PB=x,则CP=2-x,
∵△CMP∽△BPA,
∴,,
∴CM=x(2-x),
∴S四边形AMCB= [2+x(2-x)]×2=-x2+x+2=-(x-1)2+2.5,
∴x=1时,四边形AMCB面积最大值为2.5,故②正确;
③在Rt△ADN和Rt△AEN中,
,
∴△ADN≌△AEN.故③正确;
④作MG⊥AB于G,
∵AM=,
∴AG最小时AM最小,
∵AG=AB-BG=AB-CM=2-x(2-x)=(x-1)2+,
∴x=1时,AG最小值=,
∴AM的最小值=,故④正确.
⑤当PB=PC=PE=1时,
由折叠知,ND=NE,
设ND=NE=y,
在Rt△PCN中,(y+1)2=(2-y)2+12解得y=
∴NE=,
∴NE≠EP,故⑤错误,