题目内容

【题目】如图,AB是⊙O的直径,AP是⊙O的切线,点A为切点,BP与⊙O交于点C,点DAP的中点,连结CD.

(1)求证:CD是⊙O的切线;

(2)若AB=2,P=30°,求阴影部分的面积.

【答案】(1)证明见解析;(2).

【解析】

(1)连结OCAC,由圆周角定理和切线的性质得出ABP=90°,∠ACP=90°,由直角三角形斜边上的中线性质得出DC=AP=DA,由等腰三角形的性质得出∠DAC=∠DCA,∠OAC=∠OCA,证出OCD=90°,即可得出结论;

(2)由含30°角的直角三角形的性质得出BP=2AB=4,由勾股定理求出AP,再由直角三角形斜边上的中线性质得出CD的长即可.

(1)连结OC,AC,如图所示:

AB是⊙O的直径,AP是切线,

∴∠BAP=90°,ACP=90°,

∵点DAP的中点,

DC═AP=DA,

∴∠DAC=DCA,

又∵OA=OC,

∴∠OAC=OCA,

∴∠OCD=OCA+DCA=OAC+DAC=90°,

OCCD,

CD是⊙O的切线;

(2)∵在RtABP中,∠P=30°,

∴∠B=60°,

∴∠AOC=120°,

OA=1,BP=2AB=4,

=

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网