题目内容

【题目】如图,AB为⊙O的直径,CO⊥AB于O,D在⊙O上,连接BD,CD,延长CD与AB的延长线交于E,F在BE上,且FD=FE.

(1)求证:FD是⊙O的切线;
(2)若AF=8,tan∠BDF=,求EF的长.

【答案】
(1)

【解答】证明:连结OD,如图,

∵CO⊥AB,

∴∠E+∠C=90°,

∵FE=FD,OD=OC,

∴∠E=∠FDE,∠C=∠ODC,

∴∠FDE+∠ODC=90°,

∴∠ODF=90°,

∴OD⊥DF,

∴FD是⊙O的切线;


(2)

解:连结AD,如图,

∵AB为⊙O的直径,

∴∠ADB=90°,

∴∠A+∠ABD=90°,

∵OB=OD,

∴∠OBD=∠ODB,

∴∠A+∠ODB=90°,

∵∠BDF+∠ODB=90°,

∴∠A=∠BDF,

而∠DFB=∠AFD,

∴△FBD∽△FDA,

在Rt△ABD中,tan∠A=tan∠BDF=

∴DF=2,

∴EF=2.


【解析】

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网