题目内容

【题目】如图,AB是⊙O的直径,C,D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.
(1)求证:CE是⊙O的切线;
(2)连接CD,CB.若AD=CD=a,写出求四边形ABCD面积的思路.

【答案】
(1)解:证明:连接OC,AC.

∵CF⊥AB,CE⊥AD,且CE=CF.

∴∠CAE=∠CAB.

∵OC=OA,

∴∠CAB=∠OCA.

∴∠CAE=∠OCA.

∴OC∥AE.

∴∠OCE+∠AEC=180°,

∵∠AEC=90°,

∴∠OCE=90°即OC⊥CE,

∵OC是⊙O的半径,点C为半径外端,

∴CE是⊙O的切线


(2)解:求解思路如下:

①由AD=CD=a,得到∠DAC=∠DCA,于是∠DCA=∠CAB,可知DC∥AB;

=

②由OC∥AE,OC=OA,可知四边形AOCD是菱形;

③由∠CAE=∠CAB,得到CD=CB,DC=BC=a,可知△OBC为等边三角形;

④由等边△OBC可求高CF的长,进而可求四边形ABCD面积.

解:∵AD=CD,

∴∠DAC=∠DCA=∠CAB,

∴DC∥AB,

∵∠CAE=∠OCA,

∴OC∥AD,

∴四边形AOCD是平行四边形,

∴OC=AD=a,AB=2a,

∵∠CAE=∠CAB,

∴CD=CB=a,

∴CB=OC=OB,

∴△OCB是等边三角形,

在Rt△CFB中,CF= =

∴S四边形ABCD= (DC+AB)CF= a2


【解析】(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.
【考点精析】本题主要考查了角平分线的性质定理和垂径定理的相关知识点,需要掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧才能正确解答此题.

练习册系列答案
相关题目

【题目】阅读下列材料: 由于发展时间早、发展速度快,经过20多年大规模的高速开发建设,北京四环内,甚至五环内可供开发建设的土地资源越来越稀缺,更多的土地供应将集中在五环外,甚至六环外的远郊区县.
据中国经济网2017年2月报道,来自某市场研究院的最新统计,2016年,剔除了保障房后,在北京新建商品住宅交易量整体上涨之时,北京各区域的新建商品住宅交易量则是有涨有跌.其中,昌平、通州、海淀、朝阳、西城、东城六区下跌,跌幅最大的为朝阳区,新建商品住宅成交量比2015年下降了46.82%.而延庆、密云、怀柔、平谷、门头沟、房山、顺义、大兴、石景山、丰台十区的新建商品住宅成交量表现为上涨,涨幅最大的为顺义区,比2015年上涨了118.80%.另外,从环线成交量的占比数据上,同样可以看出成交日趋郊区化的趋势.根据统计,2008年到2016年,北京全市成交的新建商品住宅中,二环以内的占比逐步从3.0%下降到了0.2%;二、三环之间的占比从5.7%下降到了0.8%;三、四环之间的占比从12.3%下降到了2.3%;四、五环之间的占比从21.9%下降到了4.4%.也就是说,整体成交中位于五环之内的新房占比,从2008年的42.8%下降到了2016年的7.7%,下滑趋势非常明显.由此可见,新房市场的远郊化是北京房地产市场发展的大势所趋.(注:占比,指在总数中所占的比重,常用百分比表示)

根据以上材料解答下列问题:
(1)补全折线统计图;
(2)根据材料提供的信息,预估 2017年位于北京市五环之内新建商品住宅成交量占比约 , 你的预估理由是

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网