题目内容
【题目】已知△ABC是等腰直角三角形,∠BAC=90°,CD= BC,DE⊥CE,DE=CE,连接AE,点M是AE的中点.
(1)如图1,若点D在BC边上,连接CM,当AB=4时,求CM的长;
(2)如图2,若点D在△ABC的内部,连接BD,点N是BD中点,连接MN,NE,求证:MN⊥AE;
(3)如图3,将图2中的△CDE绕点C逆时针旋转,使∠BCD=30°,连接BD,点N是BD中点,连接MN,探索 的值并直接写出结果.
【答案】
(1)
解:如图1中,
连接AD.
∵AB=AC=4,∠BAC=90°,
∴∠B=∠ACD=45°,BC= =4 ,
∵DC= BC=2 ,
∵ED=EC,∠DEC=90°,
∴DE=EC=2,∠DCE=∠EDC=45°,
∴∠ACE=90°,
在RT△ACE中,AE= = =2 ,
∵AM=ME,
∴CM= AE=
(2)
证明:如图2中,
延长DM到G使得MG=MD,连接AG、BG,延长ED交AB于F.
在△AMG和△EMD中,
,
∴△AMG≌△EMD,
∴AG=DE=EC,
∠MAG=∠MED,
∴EF∥AG,
∴∠BAG=∠BFE=180°﹣∠FBC﹣(90°﹣∠ECB)=45°+∠BCE=∠ACE,
在△ABG和△CAE中,
,
∴△ABG≌△CAE,
∴∠ABG=∠CAE,
∵∠CAE+∠BAE=90°,
∴∠ABG+∠BAE=90°,
∴∠AOB=90°,
∴BG⊥AE,
∵DN=NB,DM=MG,
∴MN∥BG,
∴MN⊥AE
(3)
解:如图3中,
延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F.
∵△AMG≌△EMD,
∴AG=DE=EC,∠GAM=∠DEM,
∴AG∥DE,
∴∠F=∠DEC=90°,
∵∠FAC+∠ACF=90°,∠BCD+∠ACF=90°,∠BCD=30°,
∴∠BAG=∠ACE=120°,
在△ABG和△CAE中,
,
∴△ABG≌△CAE,
∴BG=AE,
∵BN=ND,DM=MG,
∵BG=AE=2MN,
∴∠FAC=∠BCD=30°,设BC=2a,则CD=a,DE=EC= a,AC= a,CF= a,AF= a,EF= a,
∴AE= = a,
∴MN= a,
∴ = =
【解析】(1)先证明△ACE是直角三角形,根据CM= AE,求出AE即可解决问题.(2)如图2中,延长DM到G使得MG=MD,连接AG、BG,延长ED交AB于F,先证明△AMG≌△EMD,推出EF∥AG,再证明△ABG≌△CAE,得∠ABG=∠CAE,由此即可解决问题.(3)如图3中,延长DM到G使得MG=MD,连接AG、BG,延长AG、EC交于点F,先证明△ABG≌△CAE,得到BG=AE,设BC=2a,在RT△AEF中求出AE,根据中位线定理MN= BG= AE,由此即可解决问题.本题考查相似形综合题、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是添加辅助线,构造全等三角形,学会添加辅助线的方法,属于中考压轴题.
【考点精析】掌握勾股定理的概念和相似三角形的判定与性质是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.