题目内容
【题目】现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.
(1)求该快递公司投递总件数的月平均增长率;
(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?
【答案】(1)10%;(2)2名业务员.
【解析】
试题分析:(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;
(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.
解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得
10(1+x)2=12.1,
解得x1=0.1,x2=﹣2.2(不合题意舍去).
答:该快递公司投递总件数的月平均增长率为10%;
(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).
∵平均每人每月最多可投递0.6万件,
∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,
∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务
∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).
答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.
【题目】如图,李老师设计了一个探究杠杆平衡条件的实验:在一个自制类似天平的仪器的左边固定托盘A中放置一个重物,在右边活动托盘B(可左右移动)中放置一定质量的砝码,使得仪器左右平衡.改变活动托盘B与点O的距离x(cm),观察活动托盘B中砝码的质量y(g)的变化情况.实验数据记录如下表:
x(cm) | 10 | 15 | 20 | 25 | 30 |
y(g) | 30 | 20 | 15 | 12 | 10 |
(1)猜测y与x之间的函数关系,求出函数关系式并加以验证;
(2)当砝码的质量为24g时,活动托盘B与点O的距离是多少?
(3)将活动托盘B往左移动时,应往活动托盘B中添加还是减少砝码?