题目内容
【题目】小明锻炼健身,从A地匀速步行到B地用时25分钟.若返回时,发现走一小路可使A、B两地间路程缩短200米,便抄小路以原速返回,结果比去时少用2.5分钟.
(1)求返回时A、B两地间的路程;
(2)若小明从A地步行到B地后,以跑步形式继续前进到C地(整个锻炼过程不休息).据测试,在他整个锻炼过程的前30分钟(含第30分钟),步行平均每分钟消耗热量6卡路里,跑步平均每分钟消耗热量10卡路里;锻炼超过30分钟后,每多跑步1分钟,多跑的总时间内平均每分钟消耗的热量就增加1卡路里.测试结果,在整个锻炼过程中小明共消耗904卡路里热量.问:小明从A地到C地共锻炼多少分钟?
【答案】(1)1800米;(2)52分钟.
【解析】
试题分析:(1)可设AB两地之间的距离为x米,根据两种步行方案的速度相等,列出方程即可求解;
(2)可设从A地到C地一共锻炼时间为y分钟,根据在整个锻炼过程中小明共消耗904卡路里热量,列出方程即可求解.
试题解析:(1)设返回时A,B两地间的路程为x米,由题意得:
,
解得x=1800.
答:A、B两地间的路程为1800米;
(2)设小明从A地到B地共锻炼了y分钟,由题意得:
25×6+5×10+[10+(y-30)×1](y-30)=904,
整理得y2-50y-104=0,
解得y1=52,y2=-2(舍去).
答:小明从A地到C地共锻炼52分钟.
【题目】某宾馆拥有客房100间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) | 180 | 260 | 280 | 300 |
y(间) | 100 | 60 | 50 | 40 |
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每间空置的客房,宾馆每日需支出各种费用60元.当房价为多少元时,宾馆当日利润最大?求出最大利润.(宾馆当日利润=当日房费收入-当日支出)