题目内容
【题目】分解因式:2m2﹣18= .
【答案】2(m+3)(m﹣3)【解析】解:原式=2(m2﹣9) =2(m+3)(m﹣3).所以答案是:2(m+3)(m﹣3).
【题目】计算:(1)(﹣7)﹣(+10)+(﹣4)﹣(﹣5)+(﹣2)3(2)(﹣1)2015﹣( ﹣ + )×(﹣60)
【题目】若x2 =25,则x=________.
【题目】在平面直角坐标系中,抛物线y=x2﹣bx+c与x轴交于点A(8,0)、B(2,0)两点,与y轴交于点C.
(1)如图1,求抛物线的解析式;
(2)如图2,点P为第四象限抛物线上一点,连接PB并延长交y轴于点D,若点P的横坐标为t,CD长为d,求d与t的函数关系式(并求出自变量t的取值范围);
(3)如图3,在(2)的条件下,连接AC,过点P作PH⊥x轴,垂足为点H,延长PH交AC于点E,连接DE,射线DP关于DE对称的射线DG交AC于点G,延长DG交抛物线于点F,当点G为AC中点时,求点F的坐标.
【题目】已知数轴上有A,B,C三点,分别代表﹣30,﹣10,10,两只电子蚂蚁甲,乙分别从A,C两点同时相向而行,甲的速度为4个单位/秒,乙的速度为6个单位/秒. (1)甲,乙在数轴上的哪个点相遇?(2)多少秒后,甲到A,B,C的距离和为48个单位?(3)在甲到A,B,C的距离和为48个单位时,若甲调头并保持速度不变,则甲,乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.
【题目】(本题满分12分)如图,以直角三角形AOC的直角顶点O为原点,以OC、OA所在直线为x轴和y轴建立平面直角坐标系,点A(0, a),C(b,0)满足。
(1)则C点的坐标为__________;A点的坐标为__________.
(2)已知坐标轴上有两动点P、Q同时出发,P点从C点出发沿x轴负方向以1个单位长度每秒的速度匀速移动,Q点从O点出发以2个单位长度每秒的速度沿y轴正方向移动,点Q到达A点整个运动随之结束.AC的中点D的坐标是(1,2),设运动时间为t(t>0)秒.问:是否存在这样的t,使,若存在,请求出t的值;若不存在,请说明理由.
(3)点F是线段AC上一点,满足∠FOC=∠FCO, 点G是第二象限中一点,连OG,使得∠AOG=∠AOF.点E是线段OA上一动点,连CE交OF于点H, 当点E在线段OA上运动的过程中,的值是否会发生变化,若不变,请求出它的值;若变化,请说明理由.
【题目】化简(﹣2x+y)+3(x﹣2y)等于( )A.﹣5x+5yB.﹣5x﹣yC.x﹣5yD.﹣x﹣y
【题目】如图,在平面直角坐标系中,原点为O,点A(0,3),B(2,3),C(2,-3),D(0,-3).点P,Q是长方形ABCD边上的两个动点,BC交x轴于点M.点P从点O出发以每秒1个单位长度沿O→A→B→M的路线做匀速运动,同时点Q也从点O出发以每秒2个单位长度沿O→D→C→M的路线做匀速运动.当点Q运动到点M时,两动点均停止运动.设运动的时间为t秒,四边形OPMQ的面积为S.
(1)当t=2时,求S的值;
(2)若S<5时,求t的取值范围.
【题目】如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由.