题目内容
【题目】材料1:一般地,个相同因数相乘:记为.如,此时,3叫做以2为底的8的对数,记为(即)
(1)计算__________,__________.
材料2:新规定一种运算法则:自然数1到的连乘积用表示,例如:,,,,…在这种规定下
(2)求出满足该等式的:
(3)当为何值时,
【答案】(1)2 ,;(2)或;(3)或.
【解析】
(1)根据材料示例计算可得;
(2)根据材料定义的运算,化简后解含绝对值的方程即可求得;
(3)综合两个材料中的定义,化简后得到解方程可求得.此方程化简后为|x+2|+|x-6|=10,可理解为求数轴上一点x到-2和6的距离之和为10,由-2和6两个点将数轴分为三部分,当x分别位于这三个区域时将方程去绝对值号后进行解方程.
解:(1)由题意可知:log39=2,
(log216)2+ log381=42+×4=,
故答案为:2;.
(2)
化简得:|x-1|=6
即x-1=6或x-1=-6
∴x=7或x=-5
故符合题意的x值为7或-5.
(3)由|x+log416|+|x-3!|=10得|x+2|+|x-6|=10
当x+2=0时,可得x=-2;
当x-6=0时,可得x=6.
则当x<-2时,原方程可化为:-x-2-x+6=10,解得x=-3;
当-2≤x≤6时,原方程可化为:x+2-x+6=10,则此时方程无解;
当x>6时,原方程可化为:x+2+x-6=10,解得x=7.
故当x为-3或7时,符合题意.
练习册系列答案
相关题目