题目内容
【题目】已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
【答案】(1)m≥﹣;(2)m=2.
【解析】
(1)利用判别式的意义得到(2m+3)2﹣4(m2+2)≥0,然后解不等式即可;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,由条件得x12+x22=31+x1x2,再利用完全平方公式得(x1+x2)2﹣3x1x2﹣31=0,所以2m+3)2﹣3(m2+2)﹣31=0,然后解关于m的方程,最后利用m的范围确定满足条件的m的值.
(1)根据题意得(2m+3)2﹣4(m2+2)≥0,
解得m≥﹣;
(2)根据题意x1+x2=2m+3,x1x2=m2+2,
因为x1x2=m2+2>0,
所以x12+x22=31+x1x2,
即(x1+x2)2﹣3x1x2﹣31=0,
所以(2m+3)2﹣3(m2+2)﹣31=0,
整理得m2+12m﹣28=0,解得m1=﹣14,m2=2,
而m≥﹣;
所以m=2.
练习册系列答案
相关题目